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Teaching in Tandem
Using Graphs in an Active-Learning Classroom to Shape  
Students’ Understanding of Biology Concepts 
By Emily G. Weigel and Aakanksha Angra

In the information age, the acqui-
sition of data literacy skills has 
become increasingly important for 
undergraduate student success, yet 
these skills are not emphasized in 
the lecture setting. Here we present 
a study to inspire educators to scaf-
fold graph knowledge and interpre-
tation into their classrooms. Specifi-
cally, we sought to understand how 
frequent use of published graphing 
materials (Angra & Gardner 2016, 
2018) and freely available primary 
literature and data repositories, 
complemented by active-learning 
instructional approaches, in an 
upper-level animal behavior lecture 
course affect student graph knowl-
edge and interpretation skills. The 
effectiveness of graphing materials 
and students’ graphing abilities 
were evaluated by three exams over 
the course of the semester. Findings 
revealed overall improvement with 
graph choice and interpretation 
abilities, particularly in interpreting 
the purpose of the graph, the nature 
of the data, and the relationships 
between independent and dependent 
variables and take-home messages. 
These findings support and extend 
the utility of the graphing materials 
to undergraduate lecture courses 
and illustrate the progression of 
student learning with graph choice 
and interpretation. 

Data are an inevitable part 
of modern-day society. 
Much like being liter-
ate (i.e., reading, writing, 

and arguing with words), there is an 
ever-present need to be data literate. 
National documents in undergradu-
ate education have repeatedly em-
phasized the importance of provid-
ing ample opportunities for students 
to collect, interpret, and critique data 
(American Association for the Ad-
vancement of Science, 2011; College 
Board, 2015; Gormally et al., 2012). 
As educators, it is our duty to train 
students in data literacy and prepare 
them for careers that demand these 
skills (Co, 2019; Strauss, 2017). 

Although data literacy is regarded 
as an important skill by faculty (Gor-
mally et al., 2012), it is not readily 
taught and assessed. Personal con-
versations with faculty at conferences 
and at our institutions, as well as with 
high school teachers, revealed that al-
though there is an interest in teaching 
and assessing data literacy, graphing 
is rarely explicitly taught and assessed 
in the lecture classroom, often due to 
time constraints, lack of knowledge 
on existing graphing instructional 
resources, challenges in scaffolding, 
or the expectation that graphing is 
best suited for laboratory sciences 
(National Research Council, 2003). 
The often-disjointed nature of labs 
from lecture, combined with unclear 
objectives and variation in graph 
skills and emphasis between instruc-
tors (e.g., lecturers, lab coordinators, 
graduate and undergraduate teaching 

assistants) leading these courses, fur-
ther derails the opportunity to develop 
students’ graphing skills (Angra & 
Gardner, 2017; Harsh et al., 2019; 
Matz et al., 2012). Students in lecture 
often do not conduct their own experi-
ments but are analyzing experiments 
and data from others’ work, which is 
how students generally encounter data 
in their day-to-day lives (Bray-Speth 
et al., 2010; Harsh & Schmitt-Harsh, 
2016; Kirby et al., 2019). Addition-
ally, student training in a typical 
lecture setting is guided by an expert 
scientist, as compared to a graduate 
student staffing a laboratory section, 
where undergraduates at many institu-
tions often receive the most practice 
with data. As graduate students have 
not reached the expert level of data 
handling possessed by experienced 
professors, a graduate student’s own 
lack of experience with graphing 
poses a problem that may manifest in 
undergraduate instruction and student 
thinking (Angra & Gardner, 2017; 
Harsh et al., 2019).

Therefore, as experts, lecture in-
structors must be deliberate with devel-
oping students’ statistical and experi-
mental skills that will be required by 
graphs (Åberg-Bengtsson & Ottosson, 
2006; Garfield et al., 2007; Pelaez et 
al., 2017; Shah et al., 1999). Alongside 
information extraction and graphical 
inferences (Friel & Bright, 1996; Shah 
et al., 1999), selection criteria used for 
creating communicative graphs (di-
Sessa, 2004; diSessa & Sherin, 2000; 
Grawemeyer & Cox, 2004; Novick, 
2004; Tufte & Graves-Morris, 1983) 
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must be explicitly taught. As suggested 
by Roth et al. (1999) and diSessa 
(2004), graphing must be presented as 
repeated opportunities to practice the 
skills necessary, which increase both 
graphing competency (McFarland, 
2010; Roth & Bowen, 2001) and criti-
cal reflection (diSessa, 2004; diSessa 
& Sherin, 2000).

Recent work has focused on mak-
ing the process of graph choice and 
construction more apparent to students 
(Angra & Gardner, 2016, 2018). The 
tools published in Angra and Gard-
ner (2016) focus on scaffolding the 
implicit practices of expert biologists 
to guide students new to data and 
graphing through concrete steps for 
graph planning, execution, and reflec-
tion. Online data repositories such as 
Dryad and free online resources such 
as HHMI BioInteractive and Data 
Nuggets (Schultheis & Kjelvik, 2015) 
allow instructors to easily download, 
modify, and implement activities cen-
tered around experimental design and 
data in class. To give students timely 
and targeted feedback on mechanics, 
communication, and graph choice, 
instructors can use a detailed and 
validated graph rubric (e.g., Angra & 
Gardner, 2018); offering such explicit 

instruction can help increase classroom 
inclusivity (Kyburg et al., 2007).

In this study, we sought to un-
derstand how active-learning ap-
proaches, coupled with the frequent 
use of published graphing materials 
(Angra & Gardner, 2016, 2018) and 
freely available data repositories (e.g., 
Data Nuggets), affect student graph 
knowledge and interpretation skills 
across the semester in an upper-level 
animal behavior lecture course. 

Methods
Setting
Under an approved Institutional Re-
view Board protocol (H17231), data 
were collected over the summer 2017 
and 2018 semesters in an upper-divi-
sion animal behavior course at a large 
southeastern R1 institution. The sub-
jects were 41 undergraduate students 
enrolled in the course during summer 
2017 and 2018 (pooled; Table 1). 

Course layout
The published graphing materials 
were introduced and implemented in 
a 10-week animal behavior lecture 
course (see online appendix), which 
met three times a week for 1 hour. 
Each lecture was taught by Emily 

Weigel and began with a short lecture 
that reinforced the concepts learned 
in the previous lecture and addressed 
any difficulties students experienced 
in prelecture homework. After the 
instructor introduced the learning 
objectives, students were shown a 
behavioral scenario and asked to 
identify a research question and hy-
pothesis, sketch their prediction in 
a graph, compare their sketch with 
the graph from primary literature, 
and reflect on the findings and how 
they contribute to studying animal 
behavior (see Appendix Figure S1 in 
Angra & Gardner, 2016, for an activ-
ity). These individual and think-pair-
share activities were discussed at 
each step to give students real-time 
feedback. Occasionally, students 
were asked to make observations of 
zoo animals or their own pets, then 
propose research questions, hypoth-
eses, and graphs to test and display 
their own observations. In-class ac-
tivities were designed to be student 
centered, with class time divided up 
approximately as follows: 30% for 
independent graph construction and 
figure interpretation, 50% for figure 
discussion, and 20% for informal 
peer and instructor feedback.

TABLE 1

Disclosed demographic information of study subjects. 

Demographic 2017 (N = 21) 2018 (N = 20)

Female 28.57% 65.00%

Racial/ethnic minority background (non-white; African American, Asian, 
two or more races) 52.38% 60.00 %

Academic 2017 (N = 21) 2018 (N = 20)

GPA (average + standard deviation) 3.1 ± 0.65 3.2 ± 0.50

Credit hours completed prior to course (average + standard deviation) 90.8 ± 32 86.7 ± 28

Note. Racial and ethnic minority includes students identifying as Black or African American, Asian and Pacific Islander, Hispanic, and 
two or more races. Grade point average (GPA) is expressed on a 4.0 scale. 

http://#table1
https://www.nsta.org/sites/default/files/journal-articles/JCST_MarApr_2023/Weigel%20appendix.docx
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Data collection and study 
design

Pre- and postsurveys
Students were given a 12-question 
pre- and postsurvey to evaluate their 
quantitative and experimental design 
knowledge. The presurvey was ad-
ministered at the beginning of the se-
mester and the postsurvey at the end 
of the last lecture in Week 10. The 
scenario in the pre- and postgraph-
ing surveys and prompts were used 
from a previous study with experts 
and novices (Angra, 2016; Angra & 
Gardner, 2017). The only modifica-
tion made was to ask students to de-
scribe how they would organize and 
label the axes and explain their graph 
choice rather than construct a graph 
(omitted due to time constraints of 
administering the survey in a single 
class period). Also included in the 
pre- and postsurveys were the quan-
titative reasoning questions from 
the Test of Scientific Literacy Skills 
(Gormally et al., 2012) and course-
specific, behavior-related, exam-
comparable graphing questions from 
common graph types in the field of 
animal behavior that were covered in 
the prerequisite introductory biology 
course. (Copies of materials and as-
sessments are in active use but may 
be obtained by contacting Emily 
Weigel.) 

Lecture exams
To measure students’ skill progres-
sion over the semester, we used data 
from three timed online exams. Each 
exam consisted of 10 multiple choice 
and five short-answer questions, de-
rived from textbook content knowl-
edge, and eight critical-thinking 
graphing questions from primary 
literature, which consisted of similar 
thought processes as the activities 
practiced in lecture. 

Statistical model selection
To examine improvement across the 
pre- and postsurveys and exams, we 
used a series of mixed models fit by 
REML within R and used Satterth-
waite’s degrees of freedom method 
for t-test approximation and linear 
model fitting (where appropriate; R 
Core Team, 2017). The base model 
for each test included the graphing 
skill variable of interest (e.g., cor-
rectly describes relationship of inde-
pendent and dependent variables), as 
predicted by which assessment (ei-
ther survey or exam, with respective 
values of pre- and post- for the sur-
vey or Exams 1, 2, or 3) and semester 
(to control for semester-to-semester 
variation). Although models in a few 
cases were better fit by Akaike Infor-
mation Criterion by dropping the se-
mester variable, we opted to remain 
conservative in our estimates and 
retain the semester in each model, 
as semester-to-semester variation 
would account for class-level demo-
graphic and instructional variation 
and remains an important consider-
ation in validating an approach in the 
classroom. Thus, we retained the se-
mester in each model, but for statisti-
cal power and fit, we did not retain 
gender, grade point average (GPA), 
race, and class level based on credit 
hours taken prior to that semester 
(e.g., sophomore, junior) as predic-
tors. We subsequently separately 
assessed these factors to determine 
student-level factors of importance.

Results 

Exam findings
When examining the improvements 
from Exam 1 to 3, we categorized the 
areas of potential improvements into 
five subcategories: (i) research ques-
tion, (ii) hypothesis, (iii) graphed 
variables, (iv) graph purpose, and (v) 

conclusions reached from the graph 
(see the online appendix). We also 
examined an overall improvement 
score that consisted of a weighted 
overall score from the subcategories 
listed; this score captures graphing 
skill increases across students that 
are otherwise not attributable to any 
one subcategory alone.

When asked to extract the re-
search question’s independent and 
dependent variables from a graph 
on Exam 1, students performed well 
and maintained that momentum on 
the succeeding exams (REML; all p 
> 0.05). By contrast, students consis-
tently performed poorly on correctly 
noting the directionality of both the 
question and the hypothesis—that 
is, the independent affects the de-
pendent variable (REML; all p > 
0.05). Whereas the overall model for 
research question (Subcategory 1) 
and hypothesis (Subcategory 2) did 
not show significant improvement 
over the course, the model term for 
semester was consistently significant, 
meaning that the students in the 2017 
semester class increased significantly 
more than those in 2018 in all cat-
egories except for directionality of 
question and hypothesis (REML; all 
t > -2.247, p < 0.0301). 

When explicitly asked to name 
the independent and dependent vari-
ables, students performed well and 
experienced intense ceiling effects 
(and showed no improvements; 
REML with all p > 0.05), including 
in the overall variable subcategory 
(3) model. Interestingly, the 2017 
class was significantly more skilled in 
naming variables compared with the 
2018 class (REML; df = 78.94498, t 
= 2.847, p = 0.00562). 

When addressing graph purpose 
(Subcategory 4), neither class showed 
gains in recognizing the nature of 
data displayed and how the data 

https://www.nsta.org/sites/default/files/journal-articles/JCST_MarApr_2023/Weigel%20appendix.docx
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align with the research question (all 
p > 0.05), although the 2017 semes-
ter class was stronger (REML; df 
= 70.069, t = -2.183, p = 0.0324). 
Where students did show large gains 
on exams in skill, however, was in 
understanding the purpose of the 
graph (REML; df = 117.99951, t = 
4.649, p = 8.75e-06), with the gains 
being potentially larger for the 2018 
class (REML; df = 117.44567, t = 
1.901, p = 0.0598). Students showed 
even stronger improvements when 
considering the entire Subcategory 
4 (REML; df = 47.8572, t = 2.924, 
p = 0.00527), suggesting individual-
dependent improvements in subsets 
of Subcategory 4. 

Finally, when considering con-
clusions (Subcategory 5), students 
showed strong increases in the abil-
ity to draw a conclusion from the 
relationship of variables in a graph 
(REML; df = 49.09832, t = 5.182, 
p = 4.11e-06), particularly between 
Exams 2 and 3. Students also im-
proved in their ability to identify 
trends in the data useful to making 
conclusions (REML; df = 52.32957, 
t = 3.215, p = 0.00224), with those 
effects strongest in the 2017 class 
(REML; df = 46.20080, t = -2.745, 
p = 0.00860). However, students 
generally showed little improvement 
in their conclusions, both in the sta-
tistical information used to draw the 
conclusion and situating the conclu-
sions within a broader biological 
context (REML, all p > 0.05). When 
addressing the conclusions subcat-
egory as a whole, students saw large 
skill gains (REML; df = 49.3598, t = 
3.030, p = 0.00389), again suggesting 
individual-dependent improvements 
across the subcategory.

Overall improvement was in-
vestigated to capture increases in 
graphing skill not attributable to any 
one subcategory alone. We found 

that the students improved overall in 
their abilities (Figure 1; REML; df 
= 83.6559, t = 2.999, p = 0.00357), 
with students in the 2017 semester 
experiencing the most gains (REML; 
df = 47.7119, t = -3.224, p = 0.00228).

Additional findings from pre- 
and postsurveys
When addressing the pre-and post-
surveys, we found the same general 
results as discussed earlier—that is, 
students were well aware of which 
variables were independent and de-
pendent and where they might be 
plotted, but they were less skilled 
in articulating the take-home mes-
sages from graphs. One additional 
improvement not captured by the 
exams was in student abilities to 
name graph elements (Figure 2; lin-
ear model; estimate = -0.19032, SE = 
0.03702, t = -5.141 p=3.25e-06). 

Survey and exam findings: 
Demographic dependence?
Given the robustness of the find-
ings from two forms of assessment, 
we decided to investigate demo-
graphic factors that may predict the 
most gains. For clarity and statistical 
power, we chose to examine whether 
demographic groups significantly 
differed in overall score on the pre-
assessment and then whether that 
difference disappeared by the postas-
sessment. We did not find significant 
differences in student performance 
based on gender, GPA, and credit 
hours taken prior to that semester 
(all t < 1.661, p > 0.107) but did find 
significant differences based on race. 
Students from minority backgrounds 
performed significantly worse at the 
start of the semester (Figure 3, left; 
linear model; t = -2.076, p = 0.0472) 
but made significant gains to perform 

FIGURE 1

Student graphing performance improvement across the three  
semester exams.

Note. Box plots represent quartiles and sample medians (heavy bars); the open 
circles (if present) are outlying data points, and red Xs denote sample means. 
Significance level of < 0.01 denoted by **. Mixed effects model with semester and 
exam as predictors, df = 83.6559, t = 2.999, **p = 0.00357, N = 41.

http://#fig1
http://#fig2
http://#fig3
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equivalently to their white peers by 
the end of the semester (Figure 3, 
right; linear model; t = -0.804, p = 
0.428). 

Patterns from in-class activities
To build competency with graphs in 
the context of biology, students were 
asked to complete in-class graphing 
assignments with the aid of graph-
ing tools (Angra & Gardner, 2016, 
2018). When graphing their own 
data, in both semesters, after two 
class sessions, approximately 35% 
of the students improved at choos-
ing an appropriate graphical repre-
sentation for the variables present. 
This is a substantial improvement 
from the beginning of the semester, 
when students incorrectly chose line 
graphs to imply continuity for dis-
crete variables. Earlier in the semes-
ter, students graphed raw data on 
bar graphs to show individual-level 
changes, which were misaligned 
with their research question, which 
typically concerned data summaries 
(e.g., averages with standard devia-
tion) and group-level differences. 

Mechanical errors, such as omit-
ting a descriptive title and key, 
were inconsistently missed among 
students and took multiple class ses-
sions to correct. By the end of the se-
mester, less than 20% of the students 
lost points for the aforementioned 
categories. Improvement in graph 
choice and providing conclusions 
from data appear to be more eas-
ily corrected than expected through 
exposure to multiple graph types 
and the development of a schema 
for which graph is appropriate for 
which variables and data types. (See 
Guide to Data Displays in Angra & 
Gardner, 2016.)

FIGURE 2

Students’ increase on pre- and postcourse assessment surveys in  
describing the parts of a graph.

Note. For this question, students were asked to correctly provide as many parts of 
a graph as they could from memory. These scores were scaled out of a possible 10 
elements (all equally weighted) to arrive at a score between 0 and 1 that could be 
used in subsequent analyses. Box plots represent quartiles and sample medians 
(heavy bars). Open circles (if present) are outlying data points. Significance level of < 
0.0001 denoted by ***. Mixed effects model with semester and survey as predictors, 
df = 0.03702, t = -5.141, ***p = 3.25e-06, N = 31.

FIGURE 3

Comparison of student scores based on racial and ethnic minority 
background.

Note. Students from racial and ethnic minority backgrounds scored significantly 
lower on the presurvey (left; LM model, F = 4.309, df = 1, 28, p = 0.04721, N = 31). 
However, the difference (performance gap) between students from minority 
backgrounds and white students disappears by the postsurvey (right; LM model, 
F = 0.647, df = 1, 28, p = 0.4279, N = 31). Box plots represent quartiles and sample 
medians (heavy bars), and the open circles (if present) are outlying data points. 
Significance levels of  < 0.05 denoted by * (left) and NS (not significant; right).
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Discussion and conclusions
We sought to understand how fre-
quent use of published graphing 
materials alongside active-learning 
instructional approaches affected 
students’ graph knowledge and in-
terpretation skills over the course 
of the semester for a lecture course. 
Despite having a modest sample 
size, we were able to demonstrate 
how incorporating the graphing ma-
terials and activities into a lecture 
course significantly improved the 
way students interact with graphs. 
Even though we saw particularly 
notable improvements by students 
from racial and ethnic minority 
backgrounds and those who did not 
usually perform well, all students 
had some areas of continued diffi-
culty. 

Areas of improvement 
Across the semester, we saw over-
all improvements in student exam 
scores. However, at the class level, 
some improvements appeared only 
at the end of the semester (e.g., draw-
ing conclusions), and others showed 
nonsignificant but steady increases 
between each exam (e.g., identify-
ing trends). Although we attribute 
improvements to the accumulation 
of practice and feedback across the 
semester, it is possible that more en-
gaging topics could have increased 
students’ motivation to learn. The 
biological context for Exam 3’s 
graph concerned mating behavior, 
which may be inherently more inter-
esting for students than opsin types 
influencing behavior (Exam 1) or 
sociality in bees (Exam 2). Practice 
assuredly increased student skills, 
but the degree of improvement was 
perhaps tempered midsemester, or 
boosted at the end of the semester, 
due to the examples chosen. Based 
on these observations, we suggest 

that instructors pick content that is 
more approachable (either through 
increased student interest or ease of 
topic) when introducing new graph 
types (e.g., box-and-whisker plots) 
in which representations of the data 
may be inherently challenging, in-
dependent of the graph’s underlying 
(biological) message. 

The pre- and postsurvey assess-
ments corroborated the exam findings, 
with an additional improvement not 
captured by the exams with regard 
to students’ abilities to name parts of 
a graph (see discussion of graph me-
chanics in Angra & Gardner, 2018). 
Explicit effort by the instructor to 
mention each graph element every 
time a new graph was presented and 
then align it with the graph rubric 
likely increased students’ awareness 
of the graph elements. Furthermore, 
when students constructed graphs, 
they were given the graph rubric to 
use to assess their own graphs and 
provide feedback to peers. These 
combined experiences likely helped 
students recall more parts of the graph 
by the end of the semester. Nonethe-
less, when using the graph rubric, 
we noticed that students gave more 
directed feedback on graph mechan-
ics and communication, straying 
away from graph choice elements. 
Instructors should therefore directly 
stress the higher-order cognitive skills 
related to graph choice, data type, and 
alignment. 

As this course emphasized higher-
order cognitive skills, we acknowl-
edge that students may need more 
than one semester of explicit graphing 
practice to achieve mastery. One sug-
gestion is to vertically scaffold graph-
ing throughout curricula, emphasizing 
basic graph mechanics skills in the 
lower-level courses and focusing on 
the higher-order cognitive skills in 
upper-level courses. 

Connections between 
experimental design, statistics, 
and graphing
Students in our study tended to lack 
a basic background in inferential and 
descriptive statistics, which raised 
some cognitive discomfort because 
their lack of statistical understand-
ing fundamentally affected the way 
they interpreted graphs. We recom-
mend courses that are heavy in ex-
perimental design or that frequently 
use primary literature, require a 
prerequisite of basic statistics, or of-
fer additional primers to adjust for 
knowledge gaps. Although this was 
an upper-level biology course, in-
structors of other levels should be 
encouraged to focus on and practice 
building students’ basic statistical 
skills, starting in the introductory bi-
ology courses and repeating this in-
formation throughout the curriculum 
to lessen these gaps.

Students found it challenging 
to cite specific statistical informa-
tion in graphs that informed their 
conclusions and situate them within 
a broader biological context. This 
reveals that despite discussing ex-
periments from primary literature, 
students either did not read or did not 
understand the application of statistics 
to the experiments presented and 
how the findings from these graphs 
could be generalized. In our context 
of a course primarily taken by upper-
division students, it was assumed that 
students should have had practice 
reading and discussing primary litera-
ture and connecting basic statistics to 
the experiments reported. However, 
it appears instructors need to offer 
repeated practice in forming explicit 
connections between experimental 
design and graph choice. At least 
initially, graph choice for students 
appears to arise from the data type 
and preconceptions of how those 
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data are typically displayed, instead 
of related to the experimental design 
and the literature to which the study 
contributes. Instructors may need to 
clearly state how a given example 
informs what is generally known 
about a phenomenon. In short, the 
richness of information contained in a 
graph regarding experimental design, 
numerical evidence, and rationale 
needs to be made explicit alongside 
interpreting the take-home message.

The students in our study mastered 
naming variables, yet they struggled 
with articulating the experimental 
relationship depicted in graphs. Stu-
dents’ ability to name but inability to 
connect dependent and independent 
variables suggests that there is addi-
tional thinking required to transition 
from the mechanics of a graph to its 
experimental meaning. We therefore 
suggest that instructors go beyond 
asking students to identify the axes 
and include experimentation as a 
natural part of data visualization 
conversations. 

As the curriculum shaping student 
performance is determined by instruc-
tors, instructors have actionable areas 
in which we can improve. Giving our 
students better scaffolds and practice 
interpreting the directionality of the 
graph can improve their understand-
ing of the biological content. Because 
students were given a novel graph on 
each exam that related to content dis-
cussed in the course, it is not likely that 
familiarity with behavioral concepts 
was the issue, but rather that students 
were unable to connect the content 
across representations. This, in many 
cases, points to an underlying issue 
in the way students relate variables 
causally. For instance, in an evolu-
tionary sense, the causal relationship 
that a bird sings to get mates is very 
different than a bird who has mates 
and sings, but students are not con-

necting their biological knowledge 
to representations when presented 
with a graph. Students often treat data 
displays as disjointed pictures of an 
experiment rather than a condensed 
display of data that connects a larger 
framework. Although correcting this 
limited thinking is likely to require 
interventions across several courses, it 
would behoove instructors to explic-
itly confirm and reaffirm biological 
content relationships with students 
prior to and alongside showing them 
those same relationships in graphs. 
Moreover, greater exposure to various 
types of experimental designs and data 
types, such as those that include trans-
formed data, may relieve students’ 
cognitive discomfort by allowing 
them the opportunity to think through 
the biological concept being described 
while considering the graph choices 
made to display findings. 

Practicing science process skills 
such as graphing and statistics in lec-
ture makes for an engaging learning 
experience that taps into students’ cu-
riosity while encouraging independent 
and thoughtful development of these 
process skills (Roth & Roychoudhury, 
1993). The use of the graphing tools 
in an active lecture context has proved 
beneficial for all students and has 
demonstrably removed a knowledge 
gap between students from different 
racial and ethnic backgrounds in the 
classroom. As past work has dem-
onstrated (Theobald et al., 2020; see 
references therein), active learning 
narrows STEM achievement gaps for 
students from racial and ethnic minor-
ity backgrounds, and in this article, 
we provide yet another approach to 
increase student skills and improve 
equity in the teaching and learning of 
science. Thus, instructors can adopt 
this approach to not only engage stu-
dents but also improve the ways their 
students conceptualize graphs. 
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